Exercice 1:

- 1) Soit P (x) = $3x^3 7x^2 22x + 8$
 - a) Déterminer le degré du polynôme P et déterminer son monôme du plus haut degré.
 - b) Vérifier que 4 est un zéro de P. Factoriser P (x)
 - c) Résoudre dans IR : $P(x) \le 0$
- 2) a) Factoriser le trinôme : $x^2 2x 8$
 - b) Soit f la fonction rationnelle définie par : $f(x) = \frac{x^2 2x 8}{P(x)}$. Déterminer le domaine de définition D de f.
 - c) Vérifier que pour tout $x \in D$; $f(x) = \frac{1}{3x-1}$
 - d) Résoudre dans IR : $f(x) = \frac{1}{5}$
 - e) Résoudre dans IR l'inéquation : $\frac{|x-1|}{3x-1} \le 0$

Exercice 2:

- 1) On pose A $(x) = -4x^4 + 20x^2 16$. Mettre A (x) en produit de facteurs.
- 2) Soit B (x) = $-2x^3 + 5x^2 x 2$. Vérifier que 2 est une racine de B puis factoriser B (x).
- 3) On pose $f(x) = \frac{A(x)}{B(x)}$ et $g(x) = \sqrt{f(x)}$
 - a) Préciser les domaines D_f et D_g des fonctions f et g.
 - b) Résoudre dans IR l'inéquation $f(x) \ge 1$
 - c) Résoudre dans IR l'inéquation g (x) $< \sqrt{2}$ (x + 2)

Exercice 3:

Soit la fonction polynôme f : $IR \rightarrow IR \ x \mapsto x^3 - 3x^2 - 6x + 8$

- 1) Calculer f (-2) puis factoriser f (x)
- 2) Soit la fonction rationnelle g définie par g (x) = $\frac{f(x)}{x^4 2x^2 8}$
 - a) Déterminer le domaine de définition de la fonction g
 - b) Résoudre dans IR l'équation g (x) = $\frac{-9}{2(x^2 + 2)}$
 - c) Résoudre dans IR l'inéquation $\sqrt{-(x^2+2)g(x)} \ge \sqrt{2}$

Exercice 4:

Soient f (x) = $x^2 + 3x - 10$ et g (x) = $x^3 - 5x^2 + 2x + 8$

- 1) Résoudre dans IR l'inéquation f(x) > 0
- 2) Calculer g (4) puis factoriser g (x)
- 3) Soit la fonction rationnelle h définie par h (x) = $\frac{g(x)}{f(x)}$
 - a) Déterminer le domaine de définition de la fonction h
 - b) Résoudre dans IR l'inéquation $h(x) \le -2$

Exercice 5:

Soient les deux fonctions $f: IR \to IR$ $x \mapsto \frac{-x^2 + 3x - 2}{x^2 - (1 + \sqrt{3})x + \sqrt{3}}$ et $g: IR \to IR$ $x \mapsto \sqrt{\frac{x^2 - 7x + 6}{2x^2 - 5x + 3}}$

- 1) Déterminer les domaines de définitions des deux fonctions f et g
- 2) Résoudre dans IR les inéquations : a) $f(x) \ge 0$ b) g(x) > 1

Exercice 6:

Soit la fonction polynôme f : $IR \rightarrow IR \ x \mapsto x^3 - 3x^2 - 6x + 8$

- 3) Calculer f (-2) puis factoriser f (x)
- 4) Soit la fonction rationnelle g définie par g (x) = $\frac{f(x)}{x^4 2x^2 8}$
 - a) Déterminer le domaine de définition de la fonction g
 - b) Résoudre dans IR l'équation g (x) = $\frac{-9}{2(x^2 + 2)}$
 - c) Résoudre dans IR l'inéquation $\sqrt{-(x^2+2)g(x)} \ge \sqrt{2}$

Exercice 7:

Soient $f(x) = x^2 + 3x - 10$

$$g(x) = x^3 - 5x^2 + 2x + 8$$

- 4) Résoudre dans IR l'inéquation f(x) > 0
- 5) Calculer g (4) puis factoriser g (x)
- 6) Soit la fonction rationnelle h définie par h (x) = $\frac{g(x)}{f(x)}$
 - a) Déterminer le domaine de définition de la fonction h
 - b) Résoudre dans IR l'inéquation $h(x) \le -2$

Exercice 8:

Soient les polynômes : $P(x) = -x^3 + 2x^2 + 11x - 12$ et $Q(x) = x^4 + x^3 - 2x^2 + 4x - 24$

- 1) a) Trouver une racine apparente de P
 - b) Factoriser P (x)
 - c) Résoudre dans IR, l'inéquation : $P(x) \le 0$
- 2) a) Vérifier que 2 et -3 sont deux racines de Q
 - b) Factoriser Q (x)
 - c) Résoudre dans IR, l'inéquation $\frac{Q(x)}{x-2} \ge 0$
- 3) Soit le polynôme A (x) = (x 2) P(x) (x 1) Q(x)
 - a) Factoriser A (x)
 - b) En déduire le degré de A
- 4) Soit f: $IR \rightarrow IR$ $x \mapsto f(x) = \frac{x^3 + x^2 x + 1}{\sqrt{2x^3 4x^2 22x + 24}} + \frac{3x^2 2x + 5}{x^4 + x^3 2x^2 + 4x 24}$ Déterminer l'ensemble de définition de f.

Exercice 9:

I / Soit P le polynôme défini par $P(x) = x^4 - 13x^2 + 36$.

- 1) Factoriser P (x)
- 2) Résoudre dans IR :a) P(x) = 0 b) P(x) < 0

II / Soit Q le polynôme défini par Q $(x) = 2x^3 - 5x^2 - 9x + 18$

- 1) Vérifier 3 est un zéro du polynôme Q.
- 2) Déterminer un polynôme R tel que, pour tout réel x, on a : Q(x) = (x 3) R(x)
- 3) Résoudre dans IR a) Q(x) = 0 b) $Q(x) \ge 2(x+2)$

III / Soit f la fonction rationnelle défini par : $f(x) = \frac{P(x)}{Q(x)}$

- 1) Déterminer le domaine de définition de la fonction f.
- 2) Montrer que pour tout réel $x \in D_f$ on $a : f(x) = \frac{(x-2)(x+3)}{2x-3}$
- 3) Résoudre dans IR les inéquations suivantes :
 - a) $f(x) \ge 0$
 - b) $f(x) \le x 1$
 - c) $\sqrt{x^4 13x^2 + 36} < (x+2)(x-3)$